Тема 5

Пассивные компоненты волоконнооптических систем передачи

Содержание темы

- Типы волоконно-оптических кабелей.
- Методы прокладки волоконно-оптического кабеля.
- Разъемные соединители и их параметры.
- Причины возникновения потерь в разъемных соединителях и их расчет.
- Типы оптических разъемов.
- Оптические муфты.
- Неразъемные соединения оптических волокон.

Содержание темы

- Оптические разветвители.
- Оптические переключатели, аттенюаторы, изоляторы и поляризаторы.
- Оптические фильтры.
- Оптические кроссы.

Пассивные компоненты ВОСП

К основным пассивным компонентам ВОСП относятся:

- оптический кабель;
- разъемные и неразъемные соединители;
- оптические муфты;
- ОПТИЧЕСКИЕ ЭЛЕМЕНТЫ ВЕТВЛЕНИЯ;
- оптические изоляторы;
- оптические фильтры;
- оптические кросс-коммутаторы.

Волоконно-оптические кабели делят на кабели для:

- подвески на опорах;
- прокладки в грунт;
- прокладки в кабельной канализации;
- прокладки в помещениях.

Маркировка волоконно-оптических кабелей:

Оптичес	кий кабел	ЛЬ											
	С —стал Б —пов А —пов	ив из ара	рирова глых ста мидны:	эльных п к или дру	та; роволок; ггих синтетических нит прутков;	ей;							
		Л —обл	пегченна	-	кабеля: укция (без промежуто вая оболочка, обеспеч							покровом;	
		 Н — оболочка, препятствующая распространению горения при одиночной прокладке кабеля; НГ — оболочка, препятствующая распространению горения при групповой прокладке кабеля; Т — оболочка из трекингостойкового материала; 											
				/Т —ст	ий несущий элемент к альной трос еклопластиковый прут								
ОК	С	Л	Н		_	М	6	П	_	Α	16	_	2,5

ОК	С	Л	Н		_	М	6	П	_	Α	16	_	2,5
М —пов Т —моду	ик кабел ив модул уль (цент женных г	ей; ральная		или неско	олько модулей,								
Количес		ентов в п		ля модул	ьного сердечника или	число							
Т —стал	ьный сил ьной трос лопласти	;		рдечника	набеля с повивом мо _г	дулей:							
A —одно Н —одно С —одно М —мно	омодовою омодовою	е, рекоме е, рекоме е, рекоме ое, 50/12	ендация ендация ендация 25 мкм,	ITU-T G.6 ITU-T G.6 ITU-T G.6 рекоменд	555;								
Количес	тво оптич	еских во	локон о	дного тиг	<u>па</u> в кабеле, шт.								
Максим	ально до	пустимоє	растягі	ивающее	усилие кабеля, кН.								

Д П С - 024 K 32 - 12 - 20,0/1,0 - X - H - K:016H/008C

Число ОВ в кабеле

Тип внешних покровов

- О- без дополнительных внешних покровов
- Л- с гофрированной продольно наложенной стальной лентой и ПЭ оболочкой
- С- с однослойной броней из стальных проволок и ПЭ оболочка
- У- с однослойной броней из стальных проволок с повышенной стойкостью к растягивающим усилиям и ПЭ оболочкой
- М- с однослойной броней из стеклопластиковых стержней и ПЭ оболочка
- 1- с двухслойной броней из стеклопластиковых стержней и ПЭ оболочка
- 2- с двухслойной броней из стальных проволок и ПЭ оболочка
- Т- с силовыми элементами из высокомодульных прядей или профильных элементов на основе стеклонитей и ПЭ оболочка
- Тс- с силовыми элементами из стеклонитей и ПЭ оболочки;
- К- с присоединенным стальным силовым элементом
- Д- с присоединенным диэлектрическим силовым элементом
- В- без присоединенного силового элемента

Тип внутренней оболочки

- А- алюмополиэтиленовая
- П- полиэтиленовая

Тип сердечника

- Д- модульный, с диэлектрическим центральным элементом
- О- трубчатый (центральный модуль)

ЛПС - 024 K 32 - 12 - 20.01.0 - X - H - K:016H/008C

Расшифровка комбинации типа волокон, где цифры это количество волокон, а буква - тип волокна !!! Символы отсутствуют если в кабеле один тип оптоволокна

Тип наружной полиэтиленовой оболочки

H- наружная оболочка в исполнении, не распространяющем горение !!! Символ отсутствует - обычный ПЭ

Температурный диапазон эксплуатации ОК

X для кабелей, эксплуатируемых на открытом воздухе, от -60°C до +70°C !!! Символ отсутствует - обычный диапазон

Допустимое статическое растягивающее / раздавливающее усилие **, kH

Число элементов в сердечнике или число пучков

Максимальное число ОВ в модуле, пучке

Тип ОВ

A- одномодовое OB с расширенным диапазоном рабочих длин волн (с пониженным затуханием на длине волны 1383±3 нм), по рекомендации <u>G.652D</u>;

Е- стандартное одномодовое G.652B;

Р- одномодовое, с пониженным затуханием;(<u>G.654</u>)

У- одномодовое, с пониженным затуханием, с расширеным диапазоном рабочих длин волн и с повышенным порогом стимулирования рассеяния Мандельштама-Бриллюэна;(<u>G.652D</u>)

Т- одномодовое, с расширеным диапазоном рабочих длин волн и с повышенным порогом стимулирования рассеяния Мандельштама-Бриллюэна (<u>G.652D</u>);

С- одномодовое с отрицательной ненулевой смещенной дисперсией (G.655);

H- одномодовое с положительной ненулевой смещенной дисперсией (G.655.C);

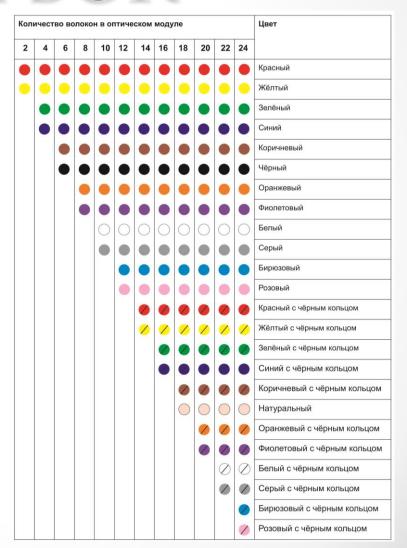
М- многомодовое с соотношением диаметров сердцевины и оболочки -50/125 мкм (G.651);

B- многомодовое с соотношением диаметров сердцевины и оболочки — 62,5/125 мкм;

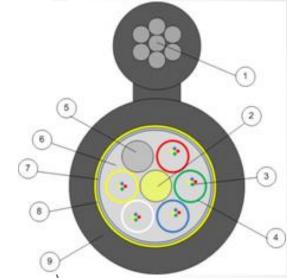
К- комбинация различных типов ОВ

Стандартная расцветка ОПТИЧЕСКИХ ВОЛОКОН В оптическом модуле:

Стандартная расцветка оптических модулей в повиве сердечника волоконно-оптического кабеля:


Число оптических модулей в повиве		2	3	4	5	6	7	8	9	10	11	12
	красн.	зелен.	натур.									
Цвет	•		0	0	0	0	0	0	0	0	0	0

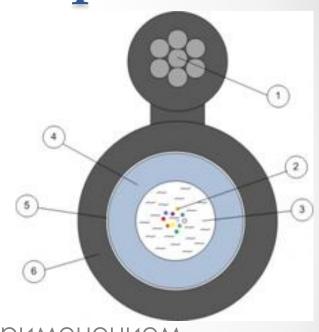
Отсчёт оптических модулей осуществляется от красного


• Волоконно-оптические системы передачи

Типы ВОК для подвески на опорах

Структура кабеля ОКЛ8:

- 1 несущий элемент (стальной канат);
- 2 центральный силовой элемент (стеклопластиковый стержень);
- 3 оптические волокна;
- 4 оптический модуль;
- 5 кордель (по заказу медные изолированные жилы дистанционного питания);
- 6 тиксотропный гидрофобный заполнитель;
- 7 скрепляющая обмотка из нитей и лент;
- 8 периферийный силовой элемент (арамидные нити);
- 9 оболочка из полиэтилена.



Типы ВОК для подвески на опорах

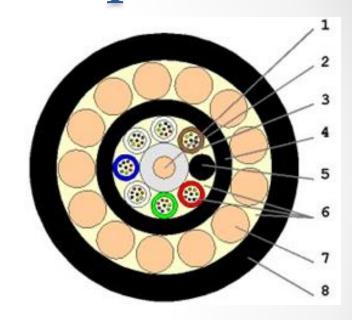
Структура кабеля ОКТ8:

1 – несущий элемент
 (стальной канат);

- 2 оптические волокна;
- 3 тиксотропный гидрофобный заполнитель;
- 4 центрально-расположенная трубка;
- 5 водоблокирующая лента;
- 6 металлопластмассовая оболочка с применением алюминиевой ламинированной ленты.

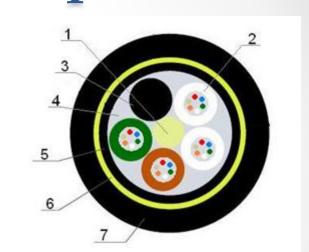
Типы ВОК для подвески на опорах

Структура кабеля ДПМ:


 1 – центральный силовой элемент (стеклопластиковый стержень);

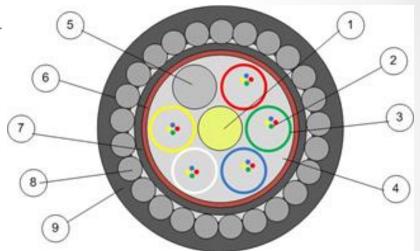
2, 3 – ПБТ-модуль со свободно уложенными оптическими волокнами и гидрофобным гелем;

4 – промежуточная полиэтиленовая оболочка;

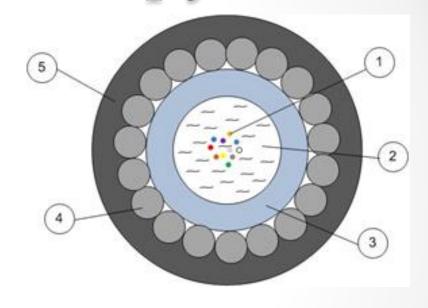

- 6 межмодульный гидрофобный заполнитель
- 7 армирование стеклопластиковыми стержнями;
- 8 наружная черная полиэтиленовая оболочка с маркировкой.

Типы ВОК для подвески на опорах

Структура кабеля ДПТ:


- 1 центральный силовой элемент (стеклопластиковый стержень);
- 2 ПБТ-модуль со свободно уложенными оптическими волокнами и гидрофобным гелем;
- 3-кордель;
- 4 межмодульный гидрофобный заполнитель;
- 5 промежуточная полиэтиленовая оболочка (для кабелей в исполнении с усиленной баллистической защитой оболочка из полиамидных материалов);
- 6 повив из арамидных нитей с подклеивающим компаундом;
- 7 наружная черная полиэтиленовая оболочка с маркировкой.

Структура кабеля ОКЛК:


 1 – центральный силовой элемент (стеклопластиковый стержень);

- 2 оптические волокна;
- 3 оптический модуль;
- 4 тиксотропный гидрофобный заполнитель;
- 5 кордель (по заказу медные изолированные жилы дистанционного питания);
- 6 скрепляющая обмотка из нитей и лент;
- 7 оболочка из полиэтилена;
- 8 броня из круглых стальных оцинкованных проволок;
- 9 защитный шланг из полиэтилена.

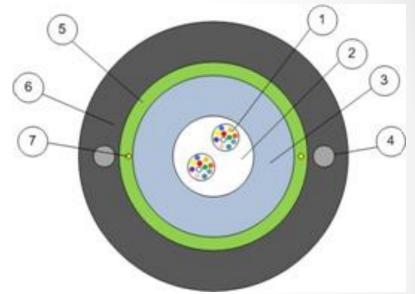
Структура кабеля ОКТК:

- 1 оптические волокна;
- 2 тиксотропный гидрофобный заполнитель;
- 3 центрально-расположенная трубка;
- 4 броня из круглых стальных оцинкованных проволок;
- 5 защитный шланг из полиэтилена.

Структура кабеля ОКТБг:

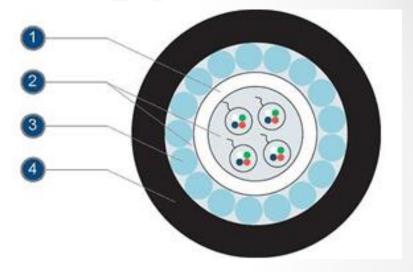
1 – оптические волокна,
 сгруппированные в пучки;

2 – тиксотропный гидрофобный заполнитель;


3 – центрально-расположенная трубка;

4 – силовой элемент (продольно расположенные стальные проволоки);

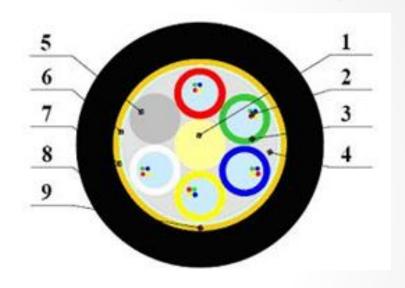
5 – броня из гофрированной стальной ламинированной ленты;


6 – защитный шланг из полиэтилена;

7 – шнур режущий.

Структура кабеля ОПС:

1 – осевой элемент (центральная трубка с гидрофобным заполнителем и оптическими волокнами, сгруппированными в пучки или уложенными свободно);


- 2 межмодульный гидрофобный заполнитель;
- 3 броня из круглых стальных проволок;
- 4 защитная оболочка (полиэтилен или материал, не распространяющий горение).

Типы ВОК для

прокладки в канализации

Структура кабеля ОКЛ:

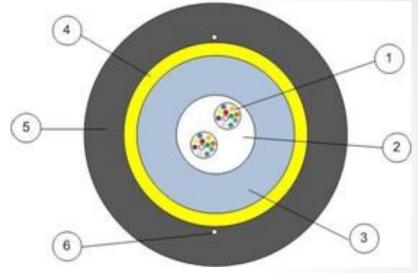
- 1 центральный силовой
 элемент (стеклопластиковый стержень);
- 2 оптические волокна;
- 3 оптический модуль;
- 4 тиксотропный гидрофобный заполнитель;
- 5 кордель;
- 6 скрепляющая обмотка из нитей и лент;
- 7 промежуточная оболочка из полиэтилена;
- 8 упрочняющий слой (арамидные нити);
- 9 наружная оболочка из полиэтилена.

Типы ВОК для

прокладки в канализации

Структура кабеля ОКТ:

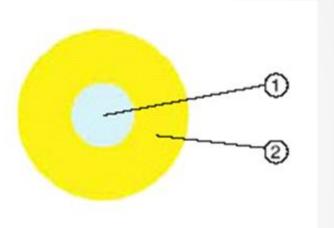
1 – оптические волокна,
 сгруппированные в пучки;


2 – тиксотропный гидрофобный заполнитель;

3 – центрально-расположенная трубка;

5 – оболочка из полиэтилена;

6 – шнур режущий.



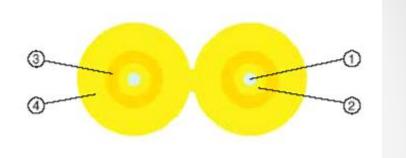
Типы ВОК для прокладки в помещениях

Структура кабеля ОКВ:

1 – оптическое волокно;

2 – плотная защитная оболочка из УФ-отверждаемого материала.

Типы ВОК для прокладки в помещениях


Структура кабеля ОКВк:

1 - оптическое волокно;

2 – плотная защитная оболочка из компаунда не распространяющего горение, низкодымного;

3 – арамидные нити (силовой элемент);

4 – оболочка из компаунда не распространяющего горение, низкодымного.

К основным методам прокладки ВОК относятся:

- подвеска вдоль железных дорог на линиях электропитания;
- укладка в грунт;
- горизонтально-направленное бурение преодоление водных преград;
- укладка в трубопровод переход водных преград по мостам или укладка в кабельную канализацию;
- прокладка внутри здания.

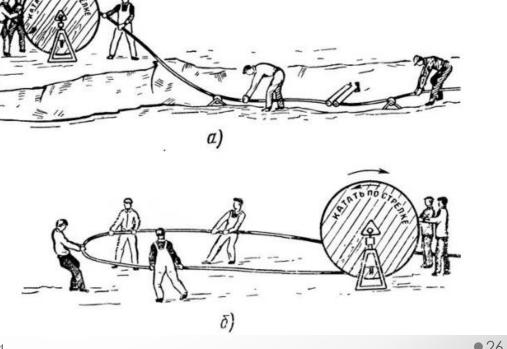
Подвеска ВОК.

Подмотка волоконно-оптического кабеля к тросу грозозащиты

Натяжение кабеля анкерным зажимом

Спуск кабеля с опоры

Муфта в металлическом корпусе с креплением, не предусматривающим размещение технологического запаса кабеля на опоре


Муфта в пластиковом корпусе с креплением технологического запаса кабеля на опоре

Укладка ВОК в грунт:

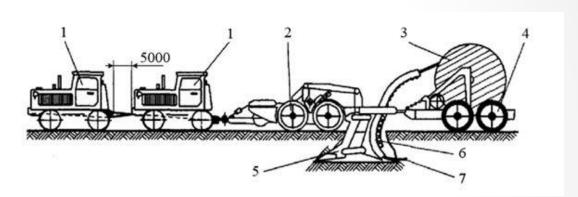
а) размотка кабеля с барабана и перемещение кабеля по роликам;

б) размотка кабеля снизу барабана петлей, занесенной

через барабан.

Бестраншейная укладка ВОК в грунт.

Траншейная укладка ВОК в грунт.



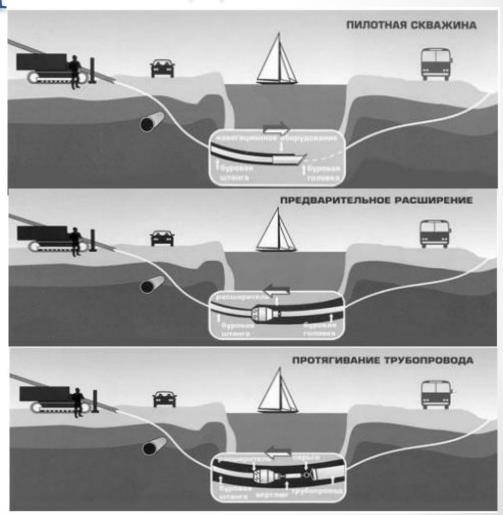
Бестраншейная укладка кабеля:

1 – пассивный кабелеукладчик;

2 – пропорщик грунта;

3 – кабельный барабан;

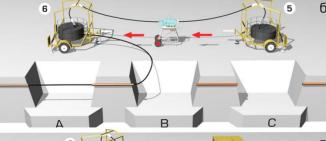
4 – транспортер кабельной продукции;

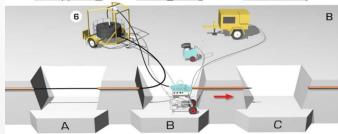

5 – нож;

6 - кассета для проводов;

7 – волоконно-оптический кабель.

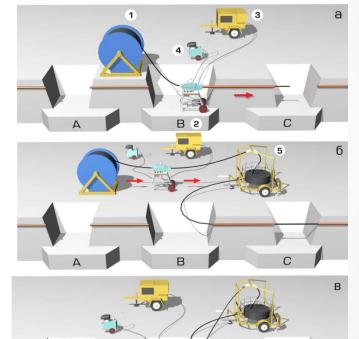
Горизонтальнонаправленное бурение:


- бурение пилотной скважины;
- последовательное расширение скважины;
- протягивание трубопровода.



Укладка ВОК в трубопровод.

ПЕРВЫЙ СПОСОБ УКЛАДКИ КАБЕЛЯ


A 2 B C

- 1 барабан с кабелем;
- 2 устройство для вдувания кабеля;
- 3 компрессор;

ВТОРОЙ СПОСОБ УКЛАДКИ КАБЕЛЯ

- 4 гидропривод;
- 5 устройство для укладывания кабеля кольцами № 1;
- 6 устройство для укладывания кабеля кольцами № 2

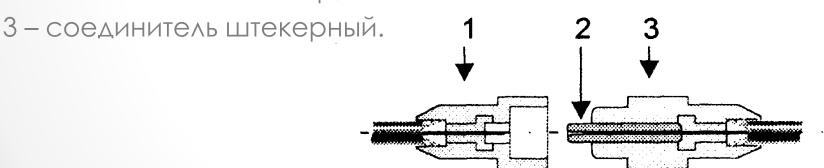
прокладка ВОК внутри здания.

Оптический коннектор (соединитель) — это устройство, предназначенное для соединения различных компонентов волоконно-оптического линейного тракта в местах ввода и вывода излучения.

Назначение оптического коннектора (соединителя) – обеспечить прохождение света из одного элемента волоконно-оптической системы передачи в другой, внося при этом минимальные оптические потери на стыке.

Основные требования, предъявляемые к разъемным соединителям:

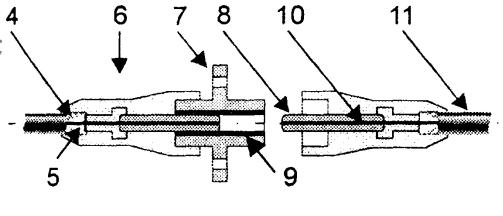
- минимальные потери, вносимые в тракт распространения оптического сигнала;
- низкие обратные потери;
- долговременная стабильность (большое число циклов включения-отключения);
- простота изготовления и установки.

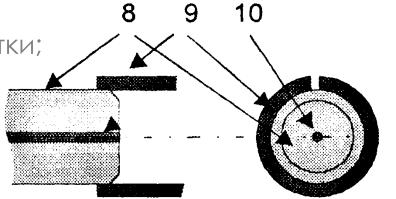

Элементы разъемных соединений:

- наконечник используется для фиксации волокон в разъеме;
- **соединительная гильза** служит для совмещения наконечников, является частью адаптера;
- антивращательный механизм предотвращает вращение наконечников, не допуская разрушения волокна;
- **пружинный механизм** обеспечивает необходимое усилие сжатия наконечников;
- **система гашения натяжения** передает усилие натяжения кабеля на несущую конструкцию разъема;
- **адаптер** (для соединения двух волокон используется гильза, входящая в состав адаптера).

При **несимметричной конструкции** для организации соединения требуется два элемента: соединитель гнездовой и соединитель штекерный.

Конструкция несимметричных коннекторов:


- 1 соединитель гнездовой;
- 2 наконечник-капилляр;



Разъемные соединители

Конструкция симметричных коннекторов:

- 4 кевларовые нити;
- 5 эпоксидный наполнитель;
- 6 соединитель;
- 7 переходная соединительная розетка (адаптер);
- 8 оптический наконечник;
- 9 центрирующий элемент розетки;
- 10 оптическое волокно;
- 11-кабель.

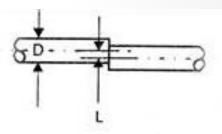
Потери в соединителях

Наиболее важными параметрами оптических разъемов являются:

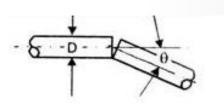
- вносимые потери;
- возвратные потери (потери на отражение).

Вносимые потери определяются:
$$\alpha = -101 g \left(\frac{P_{out}}{P_{out}} \right)$$

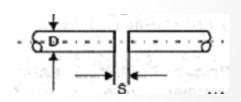
где P_{in} - мощность оптического сигнала на входе соединителя; P_{out} - мощность оптического сигнала на выходе соединителя.


Обычно зависят от типа волокна, типов и качества соединителей и составляют от **0,3 до 0,5 дБ.**

Вносимые потери в соединителях


Факторы, влияющие на величину **внешних потерь**, условно разделяют на два вида:

- 1 внешние потери из-за:
- о осевого смещения одного волокна относительно другого;
- углового смещения осей соединяемых волокон в оптическом разъеме;
- о зазора между торцами волокон;
- 2 внутренние потери, вызванные:
- о неидеальностью соединяемых волокон;
- различием величины показателя преломления сердцевин волокон, а также профиля показателя преломления;
- о различием апертур соединяемых волокон;
- о различием диаметров модового поля стыкуемых волокон.

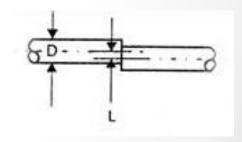

Осевое смещение оптических волокон:

Угловое смещение оптических волокон:

Зазор между торцами волокон:

Внешние потери в соединителях для SMF

Осевое смещение L одного волокна относительно другого рассчитывается по аналитической формуле:


$$\alpha_L = 4,34 \left(\frac{2L}{d_1 + d_2} \right)^2$$

где d_1 – диаметр поля моды первого волокна;

 d_2 – диаметр поля моды второго волокна;

L – величина осевого смещения;

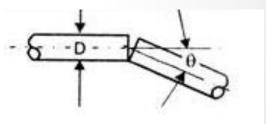
∧ – ДЛИНО ВОЛНЫ;

n – показатель преломления среды, заполняющей зазор.

Внешние потери в соединителях для SMF

Угловое смещение осей соединяемых волокон рассчитывается по аналитической формуле:

$$\alpha_{\Theta} = -10 \lg e^{-\left(\frac{\pi(d_1 + d_2)n\Theta}{2\lambda}\right)^2}$$

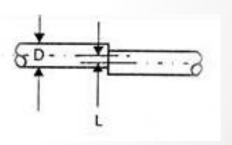

где d_1 – диаметр поля моды первого волокна;

 d_2 – диаметр поля моды второго волокна; - 6 - 0 -

О – угловое смещение осей волокон;

 λ — ДЛИНО ВОЛНЫ;

n – показатель преломления среды, заполняющей зазор.

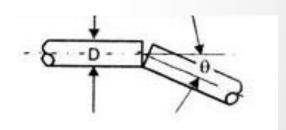

Внешние потери в соединителях для ММF

Осевое смещение L одного волокна относительно другого рассчитывается по аналитической формуле:

$$\alpha_L = -10 \lg \left(1 - \frac{4L}{\pi D} \right)$$

где L – величина осевого смещения;

D – диаметр сердцевины волокна.



Внешние потери в соединителях для ММF

Угловое смещение осей соединяемых волокон рассчитывается по аналитической формуле:

$$\alpha_{\Theta} = -10\lg\left(1 - \frac{2\Theta}{\pi \arcsin NA}\right)$$

где Θ – угловое смещение осей волокон; NA – значение числовой апертуры оптического волокна

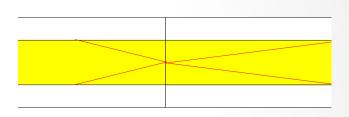
Потери, вызванные неидеальностью соединяемых волокон (отличием диаметров их сердцевин и оболочек, различием их эллиптичности и концентричности), сказываются только тогда, когда диаметр сердцевины «передающего» волокна больше диаметра сердцевины «принимающего» волокна, и определяется:

$$\alpha_1 = 10 \lg \left(\frac{D_1}{D_2} \right)$$

где D_1 – диаметр сердцевины «передающего» волокна; D_2 – диаметр сердцевины «принимающего» волокна.

Потери, вызванные различием величины показателя преломления сердцевин волокон, а также профиля показателя преломления (ступенька,

градиент), являются следствием Френелевского отражения и в случае


стыковки волокон со ступенчатым профилем показателя преломления вычисляются:

$$\alpha_2 = -10 \lg \left(1 - 2 \left(\frac{n_1 + n_2 - 2n}{n_1 + n_2 + 2n} \right)^2 \right)$$

где n_1 – показатель преломления первого волокна; n_2 – показатель преломления второго волокна.

Потери, вызванные различием апертур соединяемых волокон,

возникают в случае, когда апертура «передающего» волокна NA₁ больше апертуры «принимающего» волокна NA₂, и определяется:

$$\alpha_3 = 10 \lg \left[\left(\frac{NA_1}{NA_2} \right)^2 \right]$$

При $NA_1 < NA_2$ апертурные потери не возникают.

Потери, связанные с различием диаметров модового поля стыкуемых волокон,

определяются:

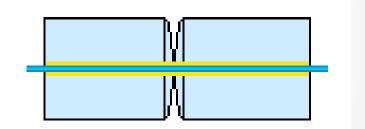
$$\alpha_4 = -201g \left[\left(\frac{2d_1 d_2}{d_1^2 + d_2^2} \right)^2 \right]$$

где d_1 – диаметр поля моды первого волокна; d_2 – диаметр поля моды второго волокна.

Возвратные потери в соединителях

Возвратные потери (коэффициент обратного отражения):

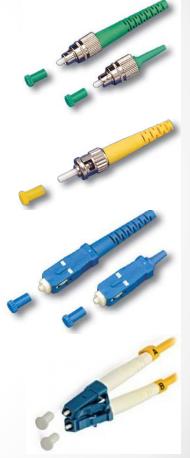
$$RL = -10\lg\left(\frac{P_1}{P_2}\right)$$


где P_1 – мощность отраженного оптического сигнала; P_2 – мощность прямого оптического сигнала.

Лучшими характеристиками обладает разъем с **более** высокими (по абсолютной величине), отрицательными возвратными потерями.

Возвратные потери в соединителях

Основным фактором, определяющим эффект обратного отражения, является **Френелевское отражение** на границе раздела двух сред кварц-воздух.


Для уменьшения уровня возвратных потерь используют так называемую **сферическую полировку** оптических волокон.

Уменьшение отражения в этом случае происходит за счет более качественного плотного контакта между торцами волокон, а также из-за того, что обратное отражение будет направлено в сторону от оси разъема.

Основные типы оптических разъемов:

- FC (Fiber Connector);
- ST (Straight Tip connector, неофициальная расшифровка Stick and Twist «Вставь и поверни»);
- SC (Subscriber Connector, неофициальная расшифровка Stick and Click «Вставь и защелкни»);
- LC уменьшенный аналог SC (высокая плотность монтажа).

Тип	Материал	Средние потери, дБ на λ=1,3мкм	
оптического	наконечника		
разъема			
		MM (62,5/125)	SM
FC	керамика	0,2	0,3
ST	керамика	0,25	0,3
SC	керамика	0,2	0,25
LC	керамика	0,2	0,25

Типы полировки (шлифовки) оптоволоконных разъемов:

- **PC** (прародитель всех остальных видов полировки) разъем, обработанный методом PC, представляет собой скругленный наконечник;
- **SPC** улучшенный вариант PC, но шлифовка производится только машинным способом;
- UPC почти плоский разъем, который производится с применением высокоточной обработки поверхности, по сравнению с PC и SPC дает отличные показатели отражательной способности и активно применяется в высокоскоростных
- **APC** разъем, в котором концы скошены под углом 8°, и отраженный сигнал практически сразу покидает волокно.

оптических сетях;

UPC

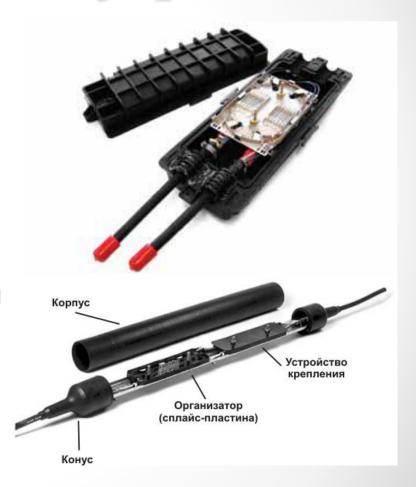
APC

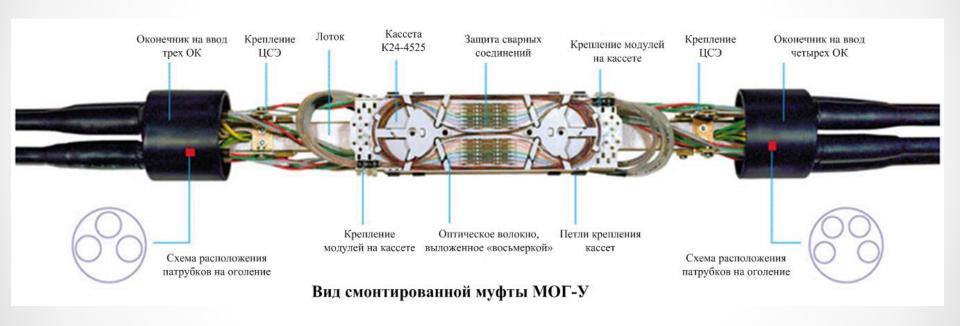
MultiMode (MM) – коннектор для многомодового волокна.

SingleMode (SM) – коннектор для одномодового волокна.

Duplex – два разъема в одном корпусе, для более плотного расположения.

Simplex – один коннектор.


Оптическая муфта – устройство, предназначенное для соединения (разветвление) строительных длин оптических кабелей и их защиты от механических воздействий.


По типу сращивания различают муфты:

- **холодные** соединение посредством болтов и различных хомутов;
- **горячие** оптическую муфту нагревают, из-за чего ее материал расширяется и кабели вставляются в соединительное устройство (такое соединение используется при размещении муфт в грунте или затапливаемой канализации).

По **типу соединения** различают муфты:

- тупиковые, наиболее распространенные, так как благодаря им возможно ввести более трех кабелей (кабель вводят со стороны основания и закрывают внешним кожухом);
- проходные, используются, когда кабели вводятся симметрично с разных (противоположных друг другу) сторон.

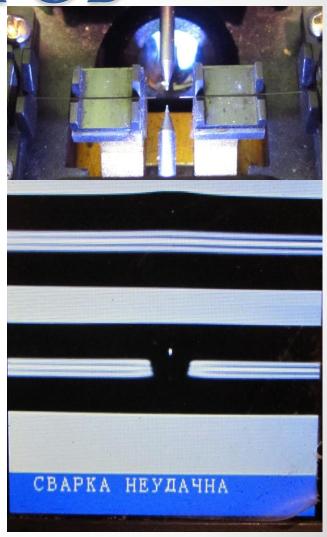
Внешний вид муфты типа МТОК

Муфты оптические внутриобъектовые

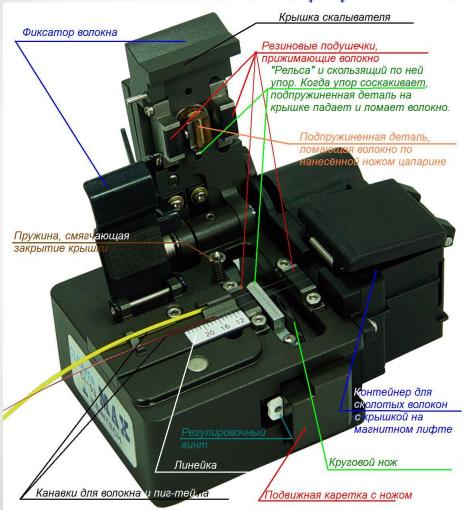
Муфты оптические Tyco Electronics

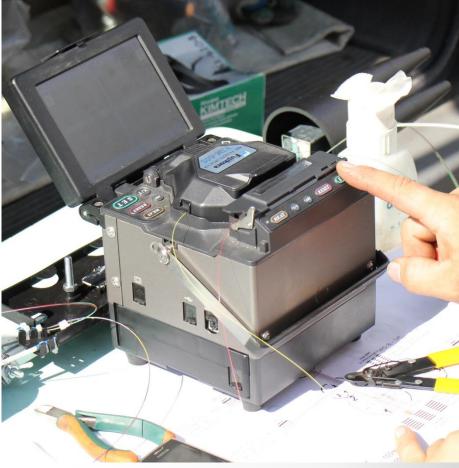
Неразъемные соединения ОВ

Постоянного монтажа кабельных систем.


Основным методом монтажа, обеспечивающим неразъемное соединение, является **сварка**.

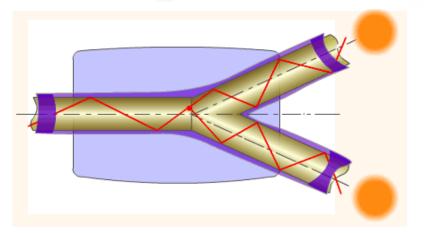
Для сварных соединений типичный диапазон достигаемых вносимых потерь составляет 0,02 – 0,1 дБ.


Неразъемные соединения <u>ОВ</u>


Этапы сварки оптических волокон:

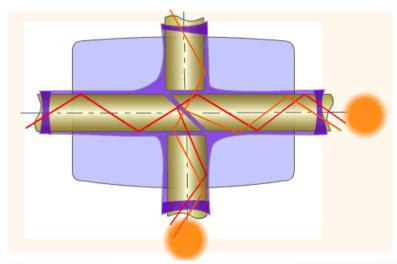
- подготовка волокон удаление оболочки, удаление загрязнения с очищенных поверхностей и скола очищенных волокон;
- непосредственно процесс сварки;
- оценка качества сварного соединения;
- защита оголенного участка волокна от механического давления и влияния окружающей среды посредством герметичной оболочки термоусадочной гильзы.

Неразъемные соединения ОВ

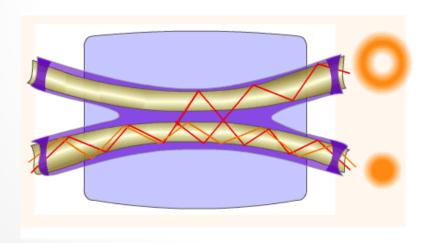

Оптический разветвитель (сплиттер) — это пассивный оптический многополюсник, распределяющий поток оптического излучения в одном направлении и объединяющий несколько потоков в обратном направлении.

В общем случае у разветвителя может быть **М входных** и **N** выходных портов.

По технологии производства разветвители бывают:


- сплавные производятся путем скрутки нескольких волокон и их последующего сплавления;
- **планарные** производятся путем специальной обработки оптопроводящей подложки.

Древовидный разветвитель:




Звездообразный разветвитель:

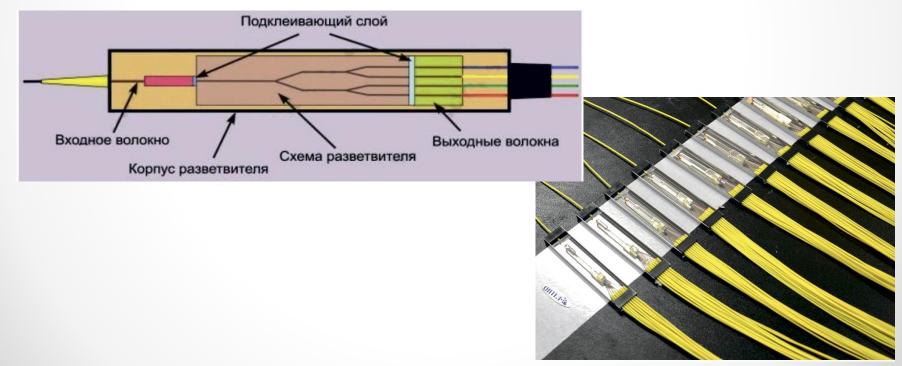
Сплавные разветвители.

В них используется эффект туннелирования: перетекания части оптической мощности из одного световода в другой через боковую поверхность при их плотном соприкосновении на некотором участке взаимосвязи.

Технология создания сплавных разветвителей состоит из следующих этапов:

- снятие защитного буфера, очистка и шлифовка оптических волокон;
- обеспечение контакта боковых поверхностей световодов и фиксация оптических волокон в специальном устройстве, который будет вытягивать волокна;
- нагрев и одновременное вытягивание световодовов с подачей оптической мощности на вход разветвителя и контролем оптической мощности на выходах.

Особенности сплавных разветвителей:


- УЗКИЙ СПЕКТР ДЛИН ВОЛН;
- неравномерный коэффициент деления сигнала;
- ВЫСОКОЯ ТОЧНОСТЬ ДЕЛЕНИЯ;
- низкие дополнительные потери на устройстве.

Области применения сплавных разветвителей:

- пассивные оптические сети (PON);
- системы телеметрии;
- мониторинг состояния каналов.

Планарные разветвители.

Оптические волноводы размещаются на подложек и имеют отличный от нее коэффициент преломления. Планарные разветвители компактнее сплавных.

Особенности планарных разветвителей:

- широкий спектр рабочих длин волн;
- равномерный коэффициент деления сигнала;
- высокая точность деления;
- низкие дополнительные потери на устройстве.

Области применения планарных разветвителей:

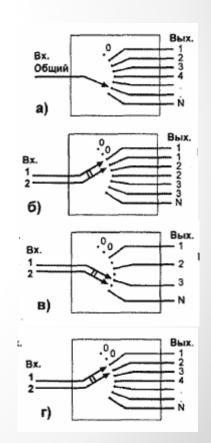
- пассивные оптические сети (PON);
- мониторинг в системах спектрального уплотнения;
- системы телеметрии.

Оптические переключатели

Оптические переключатели осуществляют механическую (без оптоэлектронного и обратного преобразования) коммутацию одного или нескольких оптических сигналов, переходящих из одних волокон в другие.

При этом управление процессом переключения может быть:

- ручное при помощи тумблера;
- **электрическое** при помощи электрического потенциала.



Основная область применения – в составе оборудования для тестирования и мониторинга ВОЛС, а также в составе системы, обеспечивающей повышенную надежность.

Оптические переключатели

Различают несколько типов оптических переключателей:

- Переключатель 1xN имеет один вход, сигнал из которого перенаправляется в один из N выходов;
- Дуплексный переключатель 2xN имеет два входа, сигналы из которых могут перенаправляться в выходы с шагом 2;
- Блокирующий переключатель 2xN имеет два входа, но только один сигнал из двух входных можно передать на выход;
- **Неблокирующий переключатель 2хN** имеет два входа, сигналы из которых могут перенаправляться в выходы с шагом 1.

Оптические переключатели

Характеристики оптических переключателей.

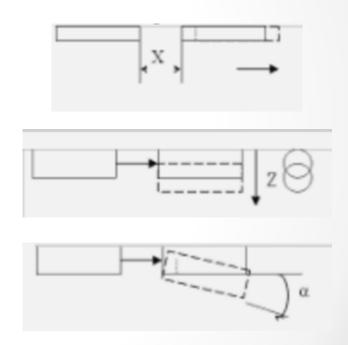
Характеристики	1×2 MM Switch	2×2 SM Switch	FDDI Dual Bypass Switch
Тип волокна	многомодовое	ОДНОМОДОВОЕ	многомодовое
Вносимые потери, дБ	0,5	0,6	0,5
Обратное отражение, дБ		< -50	
Время срабатывания, мс	< 50	< 50	< 25
Наработка на отказ, число циклов	> 10 000 000	> 10 000 000	> 10 000 000
Переходные помехи, дБ	< -80	< -80	< -80

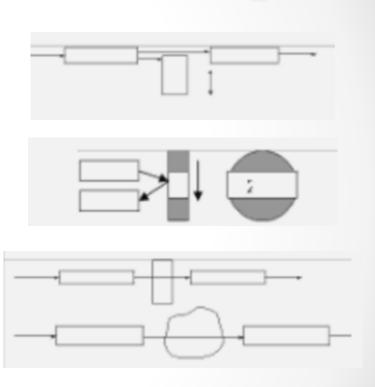
Аттенюатор – пассивный элемент, осуществляющий управляемое ослабление сигнала в волоконно-оптической линии связи.

Оптические аттенюаторы бывают:

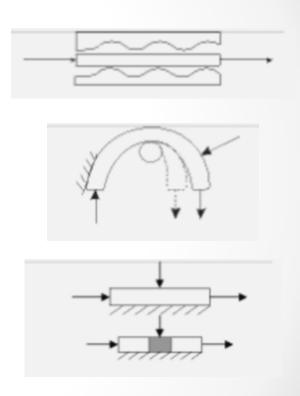
• регулируемые (переменные);

• фиксированные (постоянные).

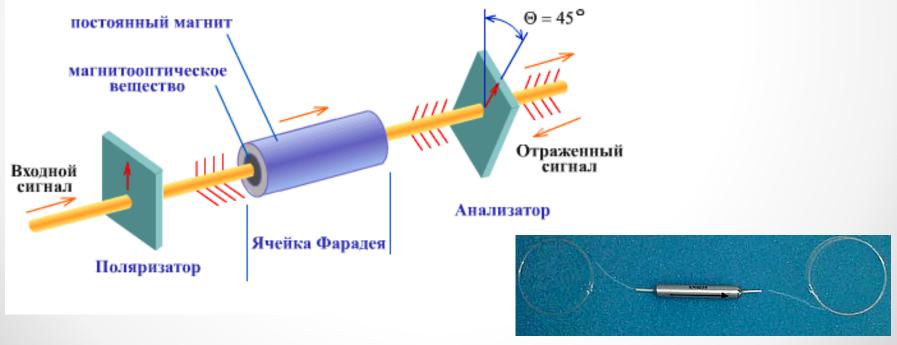




Механические аттенюаторы по способу введения затухания можно разделить на **три типа**:


1) устройства, оптические потери которых обусловлены изменением взаимного положения излучающих торцов передающих и приемных торцов отводящих волокон;

2) устройства, оптические потери в которых создаются в результате введения между излучающими торцами подводящих ОВ и приемными торцами отводящих ОВ дополнительных элементов с переменным профилем конструкции, переменным коэффициентом поглощения или переменным коэффициентом отражения;



3) устройства, в которых оптические потери вносятся без разрыва ОВ за счет изменения их геометрии или внутренних упругих деформаций и напряжений или структурных изменений ОВ или окружающей среды (локальные изменения показателя преломления или рельефа поверхности материала, изменение способности среды рассеивать свет).

Оптические изоляторы

Оптический изолятор – оптическое устройство, не обладающее свойством взаимности, предназначенное для подавления обратного отражения в ВОЛС и имеющее минимальные вносимые потери в прямом направлении.

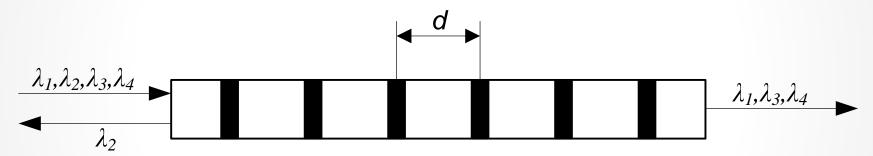
Оптические поляризаторы

Поляризатор – устройство, предназначенное для получения полностью или частично поляризованного оптического излучения из излучения с произвольным состоянием поляризации.

В соответствии с типом поляризации, получаемой с помощью поляризаторов, они делятся на:

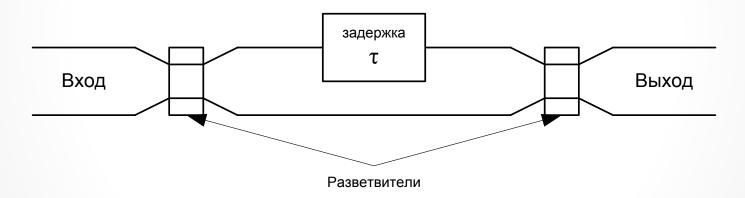
Слой клея

- **линейные** позволяют получать плоскополяризованный свет;
- круговые позволяют получить свет, поляризованный по кругу (представляют собой совокупность линейного поляризатора и оптического компенсатора).


Стекло

Стекло

Оптический фильтр – пассивный элемент, используемый для модификации проходящего через него оптического излучения, как правило, за счет изменения спектрального распределения мощности.


Фильтры на брэгговских дифракционных решетках – это последовательность полуотражающих параллельных пластин, которые разнесены на расстояние **d** друг от друга.

Световой поток **E**, проходя через очередное зеркало, частично отражается в обратном направлении, частично проходит далее.

В зависимости от расстояния **d** будет наблюдаться отражение одной или нескольких длин волн.

Фильтр Маха-Цендера можно получить путем соединения двух выходных портов одного разветвителя (расщепляет оптический сигнал на два равных потока) с двумя входным портам другого разветвителя (объединяет оптические потоки).

Каждый из потоков приобретает различные фазы вследствие наличия задержки в одной из ветвей.

Частично

посеребренные пластины

Фильтр Фабри-Перо является устройством интерференционного типа, основанным на многократном отражении светового потока от двух

поверхностей тонких пластин.

Интерференционная картина в виде колец

Часть света проходит, а часть поток отражается каждый раз, когда свет достигает второй поверхности, образуя в результате много смещенных лучей, которые могут интерферировать друг с другом.

Большое количество интерферирующих лучей создает интерферометр с исключительно высоким разрешением.

Оптические кроссы

Оптический кросс представляет собой устройство, которое предназначено для оконечивания оптического кабеля и подключения к нему активного оборудования.

Оптические кроссы изготавливаются двух видов:

- **рэковые** (для установки в коммутационные шкафы и телекоммуникационные стойки);
- настенные.

Оптические кроссы

Состав рэкового оптическиго кросса:

1 – сменные кронштейны для крепления в стойке;

2 – сменная патч-панель для крепления оптических адаптеров;

3 – отверстия для ввода оптических кабелей;

4 – узел крепления центрального

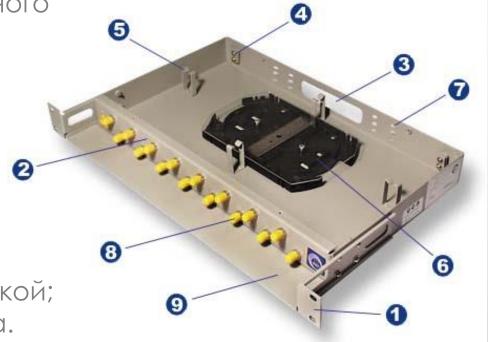
силового элемента кабеля;

5 – органайзеры для укладки

модулей кабеля и Pig-Tail;

6 - сплайс-пластина с

прозрачной крышкой;


7 – места крепления

оптических кабелей;

8 – оптический адаптер

(розетка) с защитной заглушкой;

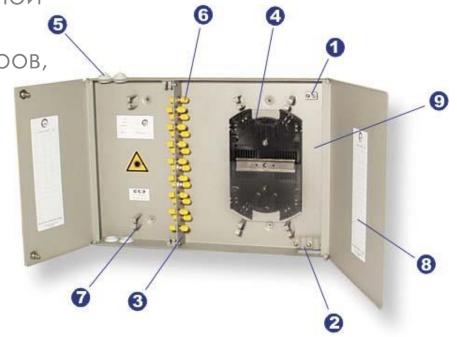
9 – корпус кроссовго шкафа.

Оптические кроссы

Состав настенного оптическиго кросса:

- 1 узел крепления центрального силового элемента кабеля;
- 2 узел крепления оптических кабелей;
- 3 патч-панель для крепления оптических розеток;

4 – сплайс-пластина с прозрачной


крышкой;

5 – узлы вывода оптических шнуров,

идущих к аппаратуре;

6 – оптический адаптер (розетка) с защитной заглушкой;

- 7 органайзеры для укладки модулей кабеля и Pig-Tail;
- 8 кроссировочная таблица;
- 9 корпус кроссовго шкафа.

